

Time to Clean Again?

Changes in Cleaning Frequency and Effectiveness at the Richard A. Reynolds Groundwater Desalination Facility

Gabriela Handley SPI

2016

Technolog

CONFERENCE & EXPOSITION

Dedicated to the World's Most Important Resource"

- Agency and Facility Background
- Historical Operating Data
- Cleaning History
- Cleaning Effectiveness
- Cleaning Investigation and Optimization
- Summary

Background: R.A.R. Facility

- Maximum daily production of 4 mgd sourced from six brackish groundwater wells
- Final product water quality goals:
 - TDS < 500 mg/l
 - Chloride < 250 mg/l
 - Manganese < 0.05 mg/l
- 3 RO trains in a 20:10 array at 81% recovery
- Bypass blend water is treated through an iron and manganese removal system
- Current membranes are Toray TMG20-400C installed in January 2010
- Upcoming expansion will add five new brackish groundwater wells and increase capacity to 10 mgd

Typical Operating Conditions:

- Dry season flux:
 9.5 gfd
- Wet season flux: 12-14 gfd

Membrane cleaning has been initiated based on significant increases in normalized differential pressure values.

Increases in differential pressure are localized in the first stage.

There has been a consistent decline in specific flux.

Normalized permeate conductivity values have actually improved over time.

Date	Train 1	Train 2	Train 3
May 2011	1 st stage only	1 st stage only	1 st stage only
	Avista P303	Avista P303	Avista P303
May 2012	1 st stage only	1 st stage only	1 st stage only
	Avista P303	Avista P303	Avista P303
May 2013	1 st and 2 nd stage	1 st and 2 nd stage	1 st stage only
	Avista P303	Avista P130	Avista P130
May 2014	1 st stage twice	1 st stage twice	1 st stage twice
	2 nd stage once	2 nd stage once	2 nd stage once
	Avista P130	Avista P130	Avista P130
December 2014	1 st stage twice 2 nd stage once Avista P130	1 st stage twice 2 nd stage once Avista P130	1 st stage twice 2 nd stage once Avista P130
June/July 2015	1 st stage twice	1 st stage twice	1 st stage twice
	2 nd stage once	2 nd stage once	2 nd stage once
	Avista P130	Avista P130	Avista P130

Cleaning Procedure: Stage 1 Block A

Cleaning Procedure: Stage 1 Block B

Cleaning Procedure: Stage 2

Cleaning History

- Cleaning Results
 - Initial cleaning interval was 1 year and cleanings were performed with the Avista RoClean P303 cleaner.
 - The third cleaning of train 1 in 2013 yielded less effective results which prompted a cleaning investigation and element autopsies
 - Cleaning trials were performed by Avista and a new cleaner for the third clean (2013) of trains 2 and 3 was selected, Avista P130.

Specific Flux

Cleaning Effectiveness

Overall Normalized Differential Pressure

Cleaning Effectiveness

Stage Normalized Differential Pressure

Cleaning Effectiveness

Normalized Permeate Conductivity

Membrane autopsies revealed heavy iron fouling and physical damage.

Feed ATD (left) and concentrate ATD (right)

Feed scroll end (left) and concentrate scroll end (right) of SN#091012439

The membrane surface of a lead element in the first stage.

Exposed membrane surface for SN#091012439

Image of membrane surface from feed end for SN# 091012439

The membrane surface of an element in the second stage

Image of membrane surface from feed end

Wet test data for elements removed from a first stage vessel

Position	Serial #	Test	Delta psi	Normalized Flow	Normalized Reject %	Weight lbs.	Notes
1 10	101011201	Pre-Clean	25	3.06	98.3	43	Iron/Separated Vexar
	101011381	Post-Clean	6	5.73	98.4		Iron/Separated Vexar
2 091	001022248	Pre-Clean	13	3.61	95.7	40	Iron/Separated Vexar
	091032348	Post-Clean	5	5.67	97.0		Iron/Separated Vexar
3 09101248	001012480	Pre-Clean	10	3.26	98.9	36	
	091012480	Post-Clean	5	6.20	99.1		Iron
4	091021639	Pre-Clean	14	3.95	99.2	37	
		Post-Clean	5	5.50	99.2		Iron
5 09	001012472	Pre-Clean	6	4.83	99.0	35	
	091012472	Post-Clean	3	5.97	99.2		
6	091032345	Pre-Clean	7	5.04	98.9	35	
		Post-Clean	5	6.07	99.1		
7 09	091032337	Pre-Clean	7	5.07	98.6	35	Fouling/Organic
		Post-Clean	4	5.93	99.0		Fouling/Organic

Wet test data for elements removed from a second stage vessel

Position	Serial #	Test	Delta psi	Normalized Flow	Normalized Reject %	Notes
1	090910267	Pre-Clean	7	5.08	98.2	
		Post-Clean	3	6.06	99.0	
2	091011539	Pre-Clean	7	5.19	98.7	
		Post-Clean	3	6.05	99.0	
3	091021614	Pre-Clean	7	5.19	98.6	
		Post-Clean	3	6.02	99.1	
4	091011465	Pre-Clean	7	5.27	99.2	
		Post-Clean	3	6.00	99.2	
5	091021598	Pre-Clean	7	5.60	99.1	
		Post-Clean	3	6.30	99.1	
6	091021566	Pre-Clean	7	5.60	99.0	
		Post-Clean	3	6.06	99.1	
7	091021634	Pre-Clean	6	5.04	98.6	
		Post-Clean	5	6.00	98.0	Fouling/Organics

• High pH cleaning test

- Two lead elements from a first stage vessel and one tail end element from a second stage vessel were removed from train 3 and cleaned with a high pH cleaner.
- Results of the test showed no significant improvement in normalized flow or rejection following the high pH clean.

Position	Sorial #	Tort	Dolta pri	Normalized	Normalized	Notos
POSICION	Serial #	Test	Deita psi	FIOW (gpiii)	Reject %	Notes
1	091021585	Pre-Clean	5	5.08	97.4	Extruding Vexar
		Post-Clean	5	6.19	92.4	
1	101011381	Pre-Clean	5	5.06	98.4	
		Post-Clean	5	6.07	98.5	
14*	90910267	Pre-Clean	6	6.05	99.0	
		Post-Clean	6	6.33	99.1	

- Changes in the fouling behavior and the resulting diminishing effectiveness of the P303 cleaner suggested that the nature of the foulant had changed over the first three years of plant operation.
- Membrane autopsies, cleaning studies, and element replacements were initiated to address increases in the fouling rate from 2013 to 2015.
- After identifying the foulant and where the fouling was occurring, a new cleaning product was selected, Avista P130, which yielded more effective results.
- The cleaning procedure was optimized and the fouling rates stabilized.

Gabriela Handley Separation Process Inc. (760) 400-3660 ghandley@spi-engineering.com

Acknowledgements:

- Scott McClelland Sweetwater Authority
- Peter Baranov– Sweetwater Authority
- Justin Brazil– Sweetwater Authority
- Ray Eaton– Avista Technologies

